IN THIS LAB, YOU WILL:

- Receive a basic overview of Structured Text programming
- Write logic using the Structured Text language
- Download the logic to a PACSystems controller
- Interact with the logic using the QuickPanel display
Overview

IEC-61131-3

*IEC 61131-3 is an international standard first published in December 1993 by the IEC. This standard defines two graphical and two textual controller programming language standards:

<table>
<thead>
<tr>
<th>Textual</th>
<th>Graphical</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Instruction List (IL)</td>
<td>- Function Block Diagram (FBD)</td>
</tr>
<tr>
<td>- Structured Text (ST)</td>
<td>- Ladder Diagram (LD)</td>
</tr>
</tbody>
</table>

Example:

```plaintext
TagC := TagA and not TagB;
```


The standard also defines both graphical and textual Sequential Function Chart elements to organize programs for sequential and parallel control processing. An example of an SFC is shown below:

Structured Text (ST)

Structured Text (ST) is a high level textual language similar to the Pascal programming language. It is very flexible and intuitive for writing control algorithms.

Structured Text uses operators such as assignment, logical branching, and loops. People trained in computer programming languages often find it the easiest language to use for programming control logic. When symbolic variables are used, ST logic resembles sentences, making it highly intelligible to beginning users as well.

ST is ideal for tasks requiring complex math, algorithms, or decision-making.

The following are a few examples that show some Structured Text code:

Example 1

//AND Logic
Motor := Switch_1 AND Switch_2;

Example 2

//Conditional Logic
if (Switch_1 OR Switch_2) then
 Start_Motor := 1;
 Motor_Start_Count := Motor_Start_Count + 1;
end_if;

Example 3

//Stop/Start control with seal-in
Motor := Stop & (Start OR Motor_Aux);

Benefits of Structured Text

- People trained in computer languages can easily learn to program control logic
- Use of variables make the programs easy to understand
- Programs can be created in any text editor

One of the primary benefits of the IEC 61131-3 standard is that it allows multiple languages to be used within the same controller. This allows the program developer to select the language best suited to each particular task.
Lab Exercise – Writing Logic Using Structured Text

In this exercise you will be writing logic using the Structured Text programming language. This lab assumes the following basic hardware configuration and setup. The IP Addresses defined below are used in the Project provided with this lab.

2. Now double-click on the _MAIN program block in the Logic section of the PAC_1 target to open it in the Structured Text editor window.
NOTE

The _MAIN block defaults to Ladder Diagram as its' programming language. In this exercise the _MAIN block has been replaced with a Structured Text block.

You will see the following.

3. Enter the following text exactly as shown.

```plaintext
//Value of PI
PI:=3.1416;

//Calculate Area in square feet
AREA:=(DIAMETER/2.0)**2.0)*PI;

//Calculate Circumference in feet
CIRCUMFERENCE:=PI*DIAMETER;

//Calculate Volume in cubic feet
VOLUME:=AREA*HEIGHT;
```

NOTE

All of the variables required for this exercise have been previously created for you in the project.
//Calculate capacity in gallons
CAPACITY:=VOLUME*7.48;

//Calculate current contents in gallons
CONTENTS:=(AREA*LEVEL)*7.48;

An explanation of this Structured Text logic is as follows:

Line 1 - PI:=3.1416; sets the variable PI equal to the value 3.1416.

Line 2 - AREA:=((DIAMETER/2.0)2.0)*PI;** calculates the Area by taking the Diameter and dividing it by 2 to obtain the Radius value and then squaring this value (**2.0) and then multiplying by the value of PI.

Line 3 - CIRCUMFERENCE:=PI*DIAMETER; calculates the Circumference by multiplying the value of PI by the value of Diameter.

Line 4 – VOLUME:=AREA*HEIGHT; calculates the Volume by multiplying the value of Area by the value of Height.

Line 5 - CAPACITY:=VOLUME*7.48; calculates the Capacity by multiplying the value of Volume by 7.48 (gallons in a cubic foot).

Line 6 – CONTENTS:=(AREA*LEVEL)*7.48; calculates the current contents of the tank by multiplying the value of Area by the actual value of Level and then multiplying the result by 7.48.

NOTE

You will be supplying the values for Height and Diameter via the QuickPanel interface on the PACSystems demo unit. The value for Level will be entered using the potentiometer on the demo unit.

4. Now, right-click on the PAC_1 target and select Go Online from the menu, or press the Online/Offline toolbar button 🌐.
5. Next, right-click and select the **Online Commands, Set Programmer Mode** menu, or press the **Toggle Online Mode** toolbar button.

6. Next, select the **Online Commands, Stop PLC** menu, or press the **Stop Active Target** toolbar button.
7. Click **OK**.

![Stop PLC dialog box]

8. **Right-click** and select the **Download to PLC** menu, or press the **F8** function key, or press the **Download Active Target** toolbar button.

![Navigator window with highlighted Download to PLC option]

9. Make sure that the items in the dialog box are checked as shown and then click **OK**.

![Download to PLC dialog box]

10. Select the **Online Commands, Start PLC** menu, or press the **Start Active Target** toolbar button.
11. Click OK.

12. Check the information displayed on the Status Bar to verify that the PACSystems controller is in Run Mode, and that the Configuration and Logic are both Equal.

Once you have successfully downloaded and started the controller, you can use the QuickPanel to exercise the application. But first, you need to download the QuickPanel application to the demo unit.

13. **Right-click** on the PAC_1 target and select **Go Offline** from the menu.
14. **Right-click** on the **QP_1** target and select **Set as Active Target** from the menu.

15. **Right-click** on the **QP_1** target and select **Download and Start** from the menu, or press the **F9** function key, or press the **Download and Start Active Target** toolbar button.

16. After the QP_1 application has been successfully downloaded to the QuickPanel go to the **QuickPanel** screen on the **PACSystems demo unit** and continue as instructed below.

17. Touch the **Numeric Data Entry button** for **Height** on the **QuickPanel** screen and enter **20** as the height of the tank.

NOTE

The Analog signal for the level has been scaled to provide 0 to 20 as its’ overall range.
18. Use the keypad to enter the value and then touch the **OK** button.

19. Next, click on the **Numeric Data Entry button** for **Diameter** and enter a diameter of your choice for the tank.

You will now have readings for the values to the right of the tank.
20. Move the **potentiometer** on the front of the **PACSystems demo unit** and you will see the **Level** changing and the **Gallons in Tank** value will change to reflect the change in Level.

If you want to examine the execution of the Structured Text logic while you interact with the QuickPanel, you can go back online with the controller.

21. **Right-click** on the **PAC_1** target and select **Set as Active Target** from the menu.

22. **Right-click** on the **PAC_1** target and select **Go Online** from the menu, or press the **Online/Offline** toolbar button.

23. Next, **right-click** and select the **Online Commands, Set Programmer Mode** menu, or press the **Toggle Online Mode** toolbar button.

24. Now you can hover the Tooltip over the variables in the Structured Text logic and see the value of the variables online. In the example below, the cursor has highlighted the **CIRCUMFERENCE** variable.
' Created: Wednesday, April 05, 2006
'
'Description: Calculates values for a cylindrically shaped tank
'that has flat ends.
'
'--

//Value of PI
PI:=3.1416;
//Calculate Area in square feet
AREA:={(DIAMETER/2.0)**2.0}*PI;
//Calculate Circumference in feet
CIRCUMFERENCE:=PI*DIAMETER;
//Calculate capacity in gallons
CAPACITY:=VOLUME*7.48;
//Calculate current contents in gallons
CURRENT:=AREA*LEVEL)*7.48;
Review

In this lab, you have been shown how to:

- Write logic in the Structured Text programming language.
- Download the logic to the PAC controller.
- Interface with the logic to obtain values.